[Story 49] Dasar Analitika Bisnis | [Semester 1] Part 4 : Quiz 1 - Dasar Analitika Bisnis | BAB : Logika dan Proposisi ; Logika dan Pembuktian
Subject : Dasar Analitika Bisnis
Tema : Dasar Analitika Bisnis | [Semester 1] Part 4 : Quiz 1 - Dasar Analitika Bisnis | BAB : Logika & Proposisi ; Logika dan Pembuktian
By : Mrs. Aruni Rahmaniar Purwanto, S. Si., M. Stat.
Questions :
Questions :
1. Let p and q be the propositios.
p : you drive over 65 miles per hour
q : you get a spending ticket
p : you drive over 65 miles per hour
q : you get a spending ticket
Write these propositions using p and q and logical connectives (including negations).
a. You do not drive over 65 miles per hour
b. You drive over 65 miles per hour, but you do not get a spending ticket
c. You will get a spending ticket if you drive over 65 miles oer hour
d. If you do nog drive over 65 miles per hour, then you will not get a spending ticket
e. Driving over 65 miles per hour a sufficient for getting a spending ticket
f. You get a spending ticket, but you do not drive over 65 miles per hour
g. Wherever you get a spending ticket, you are driving over 65 miles per hour
2. Construct a truth table for each of these compound propositions.
a. (p ∨ q)
b. (p ∧ q) ∧ r
c. (p ∧ q) ∨ r
d. p → (~q ∨ r)e. ~p → (q → r)
f. (p → q) ∨ (~p → r)
(Kerjakan mandiri dulu, yaa, bestie. Jangan langsung nyontek kunci jawaban. Selamat menikmati) ‼️‼️ 🤗🤗🤗
Key answer :
1.
a. You do not drive over 65 miles per hour
Ans. : (~p)
b. You drive over 65 miles per hour, but you do not get a spending ticket
Ans. : (p → q)
c. You will get a spending ticket if you drive over 65 miles oer hour
Ans. : (q → p)
d. If you do nog drive over 65 miles per hour, then you will not get a spending ticket
Ans. : (~p → ~q)
e. Driving over 65 miles per hour a sufficient for getting a spending ticket
Ans. : (p → q)
f. You get a spending ticket, but you do not drive over 65 miles per hour
Ans. : (q → ~p)
g. Wherever you get a spending ticket, you are driving over 65 miles per hour
Ans. : (p → q)
2.
a. (p ∨ q)
b. (p ∧ q) ∧ r
c. (p ∧ q) ∨ r
d. p → (~q ∨ r)
e. ~p → (q → r)
f. (p → q) ∨ (~p → r)
Comments
Post a Comment